




HTTPS (HyperText Transfer Protocol - Secure) is a secured HTTP
protocol and has been set as a standard for Web apps any Web
accessed service. 

The most important aspect of HTTPS is the secure transfer it provides.
HTTPS applies the encryption on existing HTTP protocol using the
private/public encryption algorithms. 

To understand the HTTPS we need to understand the purpose of the
HTTP first.

Introduction



HTTP is the protocol for message exchange between server and client. Usually,
the HTTP server "listens" on port number 80. For the purpose of testing and
local/internal use, it can be changed to meet our customer needs. HTTP is an

application protocol that uses TCP (Transmission Control Protocol) for
connecting and ensuring communication between server and client. 

HTTP Protocol

GET - used to acquire specific content from the server.
HEAD - used to get information about the resource but, not the resource itself.
POST - used to send data to the server for various use. Usually, POST is used to
create entries on the server-side.
PUT - used to modify/edit existing entries on the server-side.



HTTP Protocol

DELETE - used to remove existing entries on the server-side.
TRACE - used to get changes made to existing entries on the server-side.
OPTIONS - used to get a list of available request types for an existing resource on
the server-side.
CONNECT - used to convert the request connection to a transparent TCP/IP
tunnel.
PATCH - similar to PUT, this method partially modifies an existing server-side
resource.



HTTP Protocol

Now, every single piece of the data sent or received via HTTP exists in plain text. 

Naturally, it can be accessed without too much sweat. If the HTTP is used for,
authentication it is a bad practice because all sensitive data can be seen easily. 

Given that HTTP can be used to control sessions, caching, authentication, etc.
it implies how much it needs leaks without proper security applied.



So, we have concluded that using HTTP for
anything that requires a secure approach is

not a good idea. 
 

Let's take a look at the OSI model first:

HTTPS Protocol



HTTPS Protocol

HTTP is an application protocol and as such requires
help from Transport Layer to secure the
communication. 

TLS (Transport Layer Security) that operates on the
Transport Layer secures the HTTP in conjunction with
three higher layers (Application, Presentation, and
Session).



HTTPS Handshake

We have mentioned that HTTPS uses a private/public encryption
algorithm for securing the HTTP. 

 
Knowing how private/public key functions we understand that there has
to be a certain handshake for server and client to share encryption key. 

 
Encryption key they share will be used to encrypt entire

communication between server and client:



HTTPS Handshake

An indication that the server needs to respond to a client via TLS
What is supported TLS protocol (version) and cipher settings
client_random value generated

An indication that the client needs to talk to the server via TLS
Sending supported TLS protocol (version) and cipher settings
Server’s public key (known as a certificate)
server_random value generated

The client authenticates the server’s certificate for Common Name, Issuer and Date
The client generates a pre-master key for encryption of the communication
The client encrypts the pre-master key with the server’s certificate and sends the
encrypted data to the server

Client Hello 

Server Hello

Auth



The server decrypts pre-master key with its private key
The client generates the master key by earlier agreed cipher
The server generates the master key by earlier agreed cipher

The client generates session key for communication encryption
The server generates a session key for communication encryption

The client informs server that future communication will be encrypted
The server informs the client that future communication will be encrypted

Master key

Session keys

Encryption

HTTPS Handshake



On diagram, it looks something like this:

Now, entire communication between server and
client will be encrypted and unreadable. 

 
Important note: Before the encryption key is

generated the domain this request was initially
made for stays unencrypted. 

 
This is the only part of the request that can still be

seen if the HTTPS traffic was "listened".



FOLLOW @BLUEGRID ON SOCIAL NETWORKS 

OTHER TECH ARTICLES YOU CAN FIND HERE

https://bluegrid.io/edu/

